Разделы презентаций


Retaining measures and statically sensitive structures in unstable

Содержание

Only 20 % of construction costs visible(Monitoring since 1979)

Слайды и текст этой презентации

Слайд 1
Retaining measures and statically sensitive structures in unstable slopes
o.Univ.Prof. Dipl.-Ing.

Dr.techn. Dr.h.c.mult.
Heinz Brandl
State’s University of Technology
Institute for Soil

Mechanics and Geotechnical Engineering

Perm, 22.-23.09.2009
Scientific Conference
„Modern Technologies of Civil Engineering“

Retaining measures and statically sensitive structures in unstable slopeso.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.h.c.mult. Heinz Brandl State’s University of

Слайд 2Only 20 % of construction costs visible
(Monitoring since 1979)

Only 20 % of construction costs visible(Monitoring since 1979)

Слайд 3CABLE CRANE
(L=600m)

CABLE CRANE(L=600m)

Слайд 4Same material (reconstituted)!

Same material (reconstituted)!

Слайд 535 years
Creeping factor

35 yearsCreeping factor

Слайд 6Design of retaining structures after
„worst case“ ?
Max. slope water pressure,

flattest resultant?
„Calculating to death“ ?

Design of retaining structures after„worst case“ ?Max. slope water pressure, flattest resultant?„Calculating to death“ ?

Слайд 7SCHEME OF GEOTECHNICAL CALCULATIONS OF SAFETY FACTORS

SCHEME OF GEOTECHNICAL CALCULATIONS OF SAFETY FACTORS

Слайд 8TIME t
Dh
Sliding
without counter weight
Settlement
VERTICAL MOVEMENT Dh OF EMBANKMENT CROWN
HEIGHT OF

EMBANKMENT
Failure
MISINTERPRETATION

TIME tDhSlidingwithout counter weightSettlementVERTICAL MOVEMENT Dh OF EMBANKMENT CROWNHEIGHT OF EMBANKMENTFailureMISINTERPRETATION

Слайд 9Slope failure of a main highway
(1 week before Christmas)

Slope failure of a main highway(1 week before Christmas)

Слайд 10Original ground below the highway embankment:
Silty clay with residual strength

φr = 7°

Original ground below the highway embankment:Silty clay with residual strength φr = 7°

Слайд 11Monitoring during emergency situation
Lime into cracks
Δe as f(t)

Monitoring during emergency situationLime into cracksΔe as f(t)

Слайд 12HIGHLAND TOWER (Kuala Lumpur)
Collapse due to sliding slope

HIGHLAND TOWER (Kuala Lumpur) Collapse due to sliding slope

Слайд 13Misuse of semi-empirical design

Misuse of semi-empirical design

Слайд 14Cut and cover system for highway tunnel in steep/unstable slope

Cut and cover system for highway tunnel in steep/unstable slope

Слайд 15Theory of creeping pressure Ecreep

Theory of creeping pressure Ecreep

Слайд 16m(Φ) is multiplication factor for creeping pressure Ecreep
Influence of stiffness
of

the structure

m(Φ) is multiplication factor for creeping pressure EcreepInfluence of stiffnessof the structure

Слайд 17Tied back crib walls instead of embankment in unstable slope

Tied back crib walls instead of embankment in unstable slope

Слайд 18Non-proper crib wall system, nevertheless very flexible
(Deformations after 12

years of slope creeping)

Non-proper crib wall system, nevertheless very flexible (Deformations after 12 years of slope creeping)

Слайд 19Strengthening of damaged crib wall in creeping slope

Strengthening of damaged crib wall in creeping slope

Слайд 20Crib walls (tied back)
in steep, rugged terrain

Crib walls (tied back)in steep, rugged terrain

Слайд 21Crib walls of max. 43m height (locally tied back)

Crib walls of max. 43m height (locally tied back)

Слайд 22Requires
remote control
for monitoring
Highway bridge in steep unstable slope
Decomposed, weathered schist

with clayey mylonites

Requiresremote controlfor monitoringHighway bridge in steep unstable slopeDecomposed, weathered schist with clayey mylonites

Слайд 23Only one horizon
of anchors drawn
(actually
7 levels)

Only one horizonof anchors drawn(actually7 levels)

Слайд 24“Buttonhole solution“
Protective shell
FOUNDATION OF BRIDGE PIERS, MASTS, etc.
IN UNSTABLE

SLOPES

“Buttonhole solution“Protective shellFOUNDATION OF BRIDGE PIERS, MASTS, etc. IN UNSTABLE SLOPES

Слайд 25PROTECTIVE SHELL AROUND BRIDGE PIER

PROTECTIVE SHELL AROUND BRIDGE PIER

Слайд 26Optimised design only possible if considering interaction

Optimised design only possible if considering interaction

Слайд 27Ar = Tw = working load
PRESTRESSED
ANCHORS

Ar = Tw = working loadPRESTRESSED ANCHORS

Слайд 28CREEPING SLOPE (800 m high)
36m high protective shells uphill the

bridge piers

CREEPING SLOPE (800 m high)36m high protective shells uphill the bridge piers

Слайд 29Sliding mass creeps aside the protective shell

Sliding mass creeps aside the protective shell

Слайд 30"SECOND EUROPE-BRIDGE„
In unstable terrain; monitored since 1982
SECTION
GROUND PLAN


Слайд 31Max. height of bridge pier: 160 m

Max. height of bridge pier: 160 m

Слайд 32250 m
SUPERSTRUCTURE:
Prestressed reinforced concrete hollow-box girder
Max. height of bridge piers:

160 m

250 mSUPERSTRUCTURE:Prestressed reinforced concrete hollow-box girderMax. height of bridge piers: 160 m

Слайд 33Sockets (caissons) in carstic and seismic zone
SHAFT EXCAVATION
FOR SOCKET:
depth =

45m
diameter 23x18m

Sockets (caissons) in carstic and seismic zoneSHAFT EXCAVATIONFOR SOCKET:depth = 45mdiameter 23x18m

Слайд 34HIGHWAY ALONG UNSTABLE/CREEPING SLOPES
More than 75% of the highway run

on bridges
Seismic zone (7,5°R)

HIGHWAY ALONG UNSTABLE/CREEPING SLOPESMore than 75% of the highway run on bridgesSeismic zone (7,5°R)

Слайд 35separated lanes

Reduction of cuts and embankments
SEMI-BRIDGE
(Monitored since 1979)

separated lanesReduction of cuts and embankmentsSEMI-BRIDGE(Monitored since 1979)

Слайд 3622m high anchored wall (monitored since 1978)
Steep slope in limit

equilibrium (F~1,0)

22m high anchored wall (monitored since 1978)Steep slope in limit equilibrium (F~1,0)

Слайд 37Extreme influence
of friction angle Φ
on required anchor forces.
Required anchor force

T
to gain a safety factor of F = 1

Extreme influenceof friction angle Φon required anchor forces.Required anchor force T to gain a safety factor of

Слайд 38Twin pier system
Single pier system

Twin pier systemSingle pier system

Слайд 39Twin bridge piers on single sockets
in seismic and carstic

zones

Twin bridge piers on single sockets in seismic and carstic zones

Слайд 40Foundation sockets also used for slope drainage

Foundation sockets also used for slope drainage

Слайд 42SITE SUPERVISION !

SITE SUPERVISION !

Слайд 43SITE SUPERVISION !
Execution cheaper than design

SITE SUPERVISION !Execution cheaper than design

Слайд 44Drainage boreholes
RESERVE FOR ANCHORS
CONTINGENCY PLANS:
PRESTRESSED ANCHORS
Filter concrete
LARGE DIAMETER BORED PILES
ADITIONAL

ANCHORS
REVETMENT R.C. PANELS
(5.7x2.6 m)
HIGHWAY
capping beam
SLIDING AND WEATHERED MASS
Shotcrete
ADDITIONAL ANCHORS
(required towards

the end of construction)
2. DOWELLING WITH PILE WALL
(not required since 1973)

BRIDGE PIER
(toe zone)

Drainage boreholesRESERVE FOR ANCHORSCONTINGENCY PLANS:PRESTRESSED ANCHORSFilter concreteLARGE DIAMETER BORED PILESADITIONAL ANCHORSREVETMENT R.C. PANELS(5.7x2.6 m)HIGHWAYcapping beamSLIDING AND WEATHERED

Слайд 45CREEPING SLOPE
Bridge foundation and protection in creeping slope

CREEPING  SLOPEBridge foundation and protection in creeping slope

Слайд 46Box-foundation with secant pile walls in creeping slope
CREEP

Box-foundation with secant pile walls in creeping slopeCREEP

Слайд 47TWO OPTIONS FOR HIGHWAYS IN SLOPED TERRAIN:
Self settlements of high

embankments:

s = 1 – 3 ‰ for good material and

high compaction
s = 1 – 3 % for medium material and poor compaction

berms (≥ 3m) !

EMBANKMENT (“Green design“)

TWO OPTIONS FOR HIGHWAYS IN SLOPED TERRAIN:Self settlements of high embankments:s = 1 – 3 ‰ for

Слайд 48Situation in 1980 (immediately after end of construction)

Fill height: 100 m

Situation in 1980 (immediately after end of construction)   Fill height: 100 m

Слайд 49Situation in 2005

Situation in 2005

Слайд 50Sandwich fills
(sandy silt to rockfill)

Sandwich fills(sandy silt to rockfill)

Слайд 51 Natural slope height H ≈ 700 m 1980

Natural slope height H ≈ 700 m			1980

Слайд 52 120 m high embankment 2005

120 m high embankment			2005

Слайд 53COMPACTION OPTIMIZATION, CONTROL AND DOCUMENTATION:
ROLLER-INTERGRATED CONTINUOUS COMPACTION CONTROL (CCC)

COMPACTION OPTIMIZATION, CONTROL AND DOCUMENTATION:ROLLER-INTERGRATED CONTINUOUS COMPACTION CONTROL (CCC)

Слайд 54HEAD OF RETAINING STRUCTURE
Rather flexible and not stiff culvert in

unstable slope
SLOPE DOWELLING

HEAD OF RETAINING STRUCTURERather flexible and not stiff culvert in unstable slopeSLOPE DOWELLING

Слайд 55„slender“
dowel
r.c. SOCKET
d=6.5 m

„slender“dowelr.c. SOCKETd=6.5 m

Слайд 56New Anchors:
ATest = 5700 kN
Ar = 3800 kN

= Tw
Progressive decrease of (residual) shear strength over the years
(1.Phase)
lA

≤ 120 m
New Anchors:ATest = 5700 kNAr   = 3800 kN = TwProgressive decrease of (residual) shear strength

Слайд 58Δx max. ≈ 10 cm
Pier wall (5 x 8 m

„dowels“, 45m deep) before planting
SH ~ 4400 E-Locs á

100t
Δx max. ≈ 10 cmPier wall (5 x 8 m „dowels“, 45m deep) before planting SH ~

Слайд 59High absorption of traffic noise and air pollution
25 years after

construction

High absorption of traffic noise and air pollution25 years after construction

Слайд 60EXTENSOMETER
112 tons
reinforcement
SOCKET WALL
ANCHORED WALL H = 10 m
ellipt. SOCKETS
(8 x

5 m)
ORIG. GROUND

EXTENSOMETER112 tonsreinforcementSOCKET WALLANCHORED WALL H = 10 mellipt. SOCKETS(8 x 5 m)ORIG. GROUND

Слайд 61Combined socket-anchor-wall: greenery after 3 years

Combined socket-anchor-wall: greenery after 3 years

Слайд 62Intermittent pile walls
SLOPE DOWELLING
INFLUENCE OF DOWEL STIFFNESS!

Intermittent pile wallsSLOPE DOWELLINGINFLUENCE OF DOWEL STIFFNESS!

Слайд 63STABILIZING MEASURES:
“Dowels“, anchors, drainage, backfill and toe embankment;
Limited re-alignment
Toe

embankment is 135 m high

13 Mio m³ sliding

STABILIZING MEASURES:“Dowels“, anchors, drainage, backfill and toe embankment;Limited re-alignment Toe embankment is 135 m high13 Mio m³

Слайд 64“Dowels“, anchors, drainage, backfill and toe embankment;
Limited re-alignment
STABILIZING MEASURES:

“Dowels“, anchors, drainage, backfill and toe embankment;Limited re-alignmentSTABILIZING MEASURES:

Слайд 65SLIDING MASS: 13 Mio m³

SLIDING MASS: 13 Mio m³

Слайд 66Excavation of of 3mio m³ material for counter weight fill

against sliding slope (13mio m³)

Excavation of of 3mio m³ material for counter weight fill against sliding slope (13mio m³)

Слайд 67Geosynthetic reinforced steep embankment
(steep slopes to minimize the embankment mass)
"FLOATING"

EMBANKMENT

Geosynthetic reinforced steep embankment(steep slopes to minimize the embankment mass)

Слайд 6860 m high reinforced embankment

in rugged, steep terrain; seismic zone

60 m high reinforced embankment 	     in rugged, steep terrain;	seismic zone

Слайд 6980 m high expressway embankment, reinforced

80 m high expressway embankment, reinforced

Слайд 70Dx = 12 m in 200 years

Dx = 12 m in 200 years

Слайд 71House on r.c. box foundation
and stiffened cellar moved
30

m without cracks
(and still moving)

New owner ?
= original ground

House on r.c. box foundation and stiffened cellar moved 30 m without cracks(and still moving)New owner ?=

Слайд 72„OBSERVATIONAL METHOD“

„OBSERVATIONAL METHOD“

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика